UNIT 4E. SALMON SUPPLEMENTAL INFORMATION

In the STUDENT HANDOUTS/TEACHER PAGES Section of this unit, we have provided you with a host of information from various sources to supplement not only this unit, but also the entire curriculum. Please read through this section and use the various articles, tables, charts and maps to enhance your teaching about salmon.

EXTENSION CURRICULUM

1. Have your students make "Salmon Cards," which are "baseball cards" for salmonid species. Explain to your students that you are making cards for many fish, with special cards for salmon species. Use fish in an aquarium, in the classroom, a pet shop, or the zoo for the student models. If there are no living fish available, then use pictures. Like baseball cards, these Salmon Cards should have a drawing on one side and facts on the other. Facts used should be compiled from a list generated by the class and supplemented by you. When students get the idea, ask them to find out about the species of salmon, and make special cards for them.

When students have made their cards, ask them to use them to identify pictures of fish or living fish. Consider having students exchange cards, use them for identification, and then evaluate their ease of use. Finally, ask your students to share their favorite card with the rest of the class. Then, after gathering facts about salmonid species ask them to use their cards to answer questions you ask and that they have made up. Finally, make a class poster with a place for each student's favorite card.

Explore salmon fry adaptations by looking at the physical appearance of salmonids at different stages in their life cycle. These stages can be compared across species as well. Ask students to identify how a salmon's appearance helps it to survive in its changing habitat.

2. Have students write their own 'CLUE' game for the different species of salmon. Ask them to review the rules for the CLUE game, and play the game once to understand it. Then, in groups, they should design their own game based on salmonid species. When the games are completed, have pairs or groups exchange games and play them. As they play, they should evaluate the game they are playing. Evaluative criteria should cover the construction of the materials, clarity of directions, ease of play, and factual integrity of questions and protocols involving salmon.

- 3. Salmonids in the Classroom. Canadian Department of Fisheries and Oceans, B.C. Both the Primary and Intermediate editions of this curriculum contain similar activities; the Intermediate version contains more activities and vocabulary. Pages 298-312 cover salmonid anatomy and dissection and the functions of anatomical features. Activities suggested here are taken from the Intermediate edition. You can look up their counterparts in the Primary edition if they seem to be too difficult for your students. This curriculum is available from Lesson Aids Service, B.C. Teachers' Federation, 2235 Burrard Street, Vancouver, B.C., Canada, V6J 3H9, (800) 663-9163, FAX 737-9593.
- 4. Fashion a Fish, Project Wild Aquatic, pp. 56-60. This is an activity in which students learn about the evolutionary adaptations of fish, which help them to survive in their environments. Students design a particular fish whose adaptations are determined from "adaptation cards" which depict coloration, mouth type, body shape and reproductive adaptations. They fashion their fish from these adaptive characteristics, then report their fish to the class. You can then use these learning's about evolutionary adaptations to open a discussion of the anadromous life cycle of the salmon as a particular adaptation. (See the Bibliography for ordering address.)
- 5. Have students research various physical adaptations that salmon species exhibit throughout their life cycle which change their appearance or behavior such as: coloration, physiological adaptations, or mating behaviors. You can organize students into groups by species or adaptation. They should make posters, which communicate their assigned information, and provide written descriptions detailing the adaptation or behavior. The posters and written descriptions should be posted on the bulletin board so that students can refer to them during other Salmon Watch activities.
- 6. California's Salmon and Steelhead, Our Valuable Natural Heritage, pp. 18-36, contains a series of dissection and recitation activities on salmonid anatomy, finishing with a fish printing activity in which students make ink or paint prints from an actual salmon, and generate a life-sized drawing of a salmon from a smaller picture. (See the Bibliography for ordering address.)
- 7. Look up the World Wide Web address, http://www.streamnet.org/, for a very useful source of information about salmon. This is the StreamNet home page that contains an online database of information about salmon, the life history and ecology of species, color species of a male and female of each species listed, and extensive data on salmonids and their habitats. It might be used to organize Units 1-3 for your students.
- 8. Order the 25-minute film, Life of the Sockeye Salmon. Show the film, and then set out reference material on salmonid species. Introduce or review the names of all the species of Pacific Salmon (coho, sockeye, chinook, pink, chum, and the two sea-run trout: steelhead and cutthroat). Explain that their life cycles are similar to the sockeye, but differ in number of eggs deposited, length of time spent in the ocean, weight, length, and use (commercial, sport, subsistence). A detailed study of life cycle differences can be done using the Field Guide to the Pacific Salmon and other reference materials.

9. Use the film to compare the life cycle of the sockeye with other species of Pacific Salmon. The film explores the needs of the sockeye during each stage of its life cycle, the fishing industry, which is dependent on sustained fish runs, and the hazards, which may prevent salmon from living out their life cycles. It is available for rent from:

Continuing Education Film Library 1633 SW Park Avenue PO Box 1383 Portland, OR 97207 (503) 229-4890 (Refer to film no. 12240)

- 10. Salmon Life Cycle, Stream Scene, pp. 169-172. This section contains more information on the salmonid life cycle, which students can use in a class work or homework activity.
- 11. Hooks and Ladders, Project Wild Aquatic, pp. 43-48. This is a kinesthetic activity, which introduces the student to some of the hurdles fish must overcome during migration. Students play the roles of fish or obstacles to the migration of fish such as a dam or rapids.
- 12. California's Salmon and Steelhead, Our Valuable Natural Heritage, pp. 37-75, contains several interesting life cycle activities for students at all levels. Included are drawings, readings, art constructions, poetry, and mathematics vehicles for delivering information about salmonid life cycles.

UNIT 4E. SALMON SUPPLEMENTAL INFORMATION LIST

#	INFORMATION	PREPARED BY
4E-1	A Changing Columbia Basin, 1770-Present	Oregon State University
4E-2	Causes of Salmon Mortality 1770 –Present	Oregon State University
4E-3	Table 1. WHERE ARE THE SALMON, WHEN?	Pacific States Marine Fisheries Commission
4E-4	Table 2. Salmonid Habitat Requirements	Various Authors

A Changing Columbia Basin, 1770-Present

Since the 1700s, when the human impact on salmon was limited to native fisheries, salmon have been increasingly affected by the Northwest's growing population and economy.

The first major European impact on the natives of the Columbia River occurred in the 1770s; by the mid-1800s, European diseases had reduced their population by 90% and the Columbia's resources were being exploited for the benefit of the European population. By the 1890s, dams were significantly affecting salmon runs; hydroelectric and flood-control projects eventually reduced the area available to salmon by half. Salmon of the Columbia are also affected by grazing, irrigation, logging, mining, overfishing, pollution, urbanization, ocean conditions, and predators.

As the Northwest's population and economy grow, the future of wild salmon is uncertain. Plans for improving the status of salmon have become increasingly

common, but many projects simply undo the damage caused by previous generations of well-

generations of wellintentioned developers. A historical perspective is essential for understanding the current and future status of salmon and steelhead in the Columbia Basin.

How has the Columbia changed from 1770 to the present? These maps and graphs illustrate how humans have altered the river and how these alterations have affected salmon survival.

Causes of Salmon Mortality 1770 – Present

Mortality Circa 1770:

Natural mortality of salmon was due to factors like natural death after spawning; predators, including mammals, birds and other fish; and naturally occurring population fluctuations caused by ocean and river conditions. Tribal fisheries were the only human impacts at this time.

Mortality Circa 1940:

The ratio of natural mortality declines was due to human activity such as commercial fishing, trapping of beaver which reduced rearing habitat in beaver ponds; overgrazing resulted in damage to streamside vegetation; river corridors and estuaries were affected by urbanization; the use of splash dams for logging destroyed stream beds; hydroelectric facilities and irrigation dams on tributaries blocked access to spawning areas; water drawn for irrigation, industry, cities, and towns reduced river flow; and water quality was degraded by a wide variety of causes.

Mortality Circa 1996:

Mortality in the ocean increased with El Nino conditions and ocean trolling in Alaska and British Columbia. The Chief Joseph and Hells Canyon dams blocked passage to large areas of habitat. Other large dams caused 5% or more mortality (per dam) for smolts descending to the sea and adult salmon returning to spawn. Dams also changed water temperatures, reduced flow of rivers, increased nitrogen levels, and allowed more predation by Northern Pike Minnow and other predators. The destruction and filling of wetlands and estuaries reduced habitat. Forest harvest operations may have resulted in increased silt, reduced shade, and disturbed spawning beds. Urbanization, i.e. the spread of cities, roads, and other development, reduced habitat and increased pollution. Over withdrawal of water for irrigation for agriculture frequently reduced flow of rivers. Unscreened water diversions trapped fish in ditches (in 1990, less than 5% of the diversions in Oregon were screened).

Hatchery fish often increased disease rates and reduced diversity of wild stocks. Improper grazing of livestock harmed inland spawning habitat by destroying vegetation and polluting streams. Physical or natural disasters, such as landslides and floods, also influenced salmon mortality rates.

Out of approximately 1000 original wild native anadromous stocks found in Oregon, Washington, and California, 106 are now extinct and 314 are at risk of extinction. Currently, hatcheries produce two-thirds of the salmon found in the Columbia River.

Attempts to improve salmon survival include:

Improved fish passage facilities at dams; streamside or riparian buffers in logged areas (specific requirements spelled out in the Oregon Forestry Practices Act); barging or trucking of salmon smolts past dams; habitat enhancement; a Northern Pike Minnow bounty to reduce predation; regulation of commercial and recreational catches; additional spill from reservoirs to increase flow speed during smolt out-migration and to promote more natural riverbeds; improved hatchery practices; and adoption of fish friendly road construction and culvert standards.

(Adapted from: Gilden, Jennifer, Smith, Courtland, Department of Anthropology, Oregon State University. Research funded by Sea Grant Oregon through NOAA. Sea Grant Oregon, Oregon State University 1998.)

	Gene		liotory i d						
	ADULTS RETURN TO STREAMS FROM OCEAN		EGGS IN GRAVEL	YOUNG IN STREAM	FRESH WATER HABITAT	YOUNG MIGRATE DOWNSTREAM	TIME IN ESTUARY	TIME IN OCEAN	ADULT WEIGHT (average) English(Metric)
соно	Sept. –Jan	coastal streams shallow tributaries	Sept -May	1+ years	tributaries, main stem side channels, and slack water	Mar-Jul (2 nd year)	few days to one month	2 years	5-20 lb (8)
CHUM	Sept. –Jan	coastal rivers and streams, lower reaches	Sept-Mar	days-weeks	little time spent in freshwater	shortly after young leave gravel	7-14 days	2.5-3 years	8-12 lb. (10)
CHINOOK									
Spring run	Jan. – July Jun-mid Aug	main stem- large and	Jul-Jan Sept-Nov	1+ years 1+ years	main stem- large and small	Spring (2 nd year)	days-months	2-5 years	10-20 lb. (15) 10-30 lb. (14)
Fall run	Aug. – Nov.	small rivers	Sept-Mar	3-7 months	rivers	Dec Mar (2 year)			15-40 lb.
CUTTHROAT (Coastal- Sea Run)	Jul-Dec	tiny tributaries of coastal streams	Dec-Jul	1-3 years (2 avg)	tributaries	Mar-Jun (of 2 nd -4 th yr)	days-months	0.5-1year	0.5-4 lb (1)
PINK	Jul-Oct	main stem of streams, tributaries, and lower reaches	AugJan	days-weeks	little time spent in freshwater	Dec-May	few days	1.5 years	3-10 lb (4)
SOCKEYE	Jul-Aug	streams, usually near lakes	Aug. –Apr	1-3 years	lakes	Apr-Jun (of 2 nd -4 th yr)	few days	1-4 years	3-8 lb (6)
STEELHEAD									
Winter run	Oct-Jun	tributaries and small and	Feb-Jul	1-3 years	tributaries	Mar-Jun (of 2 nd – 5 th yr)	less than a month	1-4 years	5-28 lb (8)
Summer run	Jun-Oct	mid-size streams and	Dec-May	1-2 years		Spring & Summer (of 3 rd - 4 th yr)			5-20 lb
	(Columbia)	rivers	Feb-Jun	1-2 years		(of 3 rd - 5 th vr)			5-30 H (8)
	Apr-Nov (Coastal)		Feb-Jul	1-3 years		(of 2 nd - 5 th yr)			

	Sea Run Cutthroat Trout	Steelhead- Summer	Steelhead- Winter	Chum	Coho	Chinook- Spring	Chinook – Fall		
	Jun-Oct	May-Jul	Nov-May	Oct -Dec	Sept-Jan	Mar-Jun	Sept-Dec	Migration	
	Dec-Feb	Jan-Jun	Dec -May	Nov-Dec	Sept - Jan	Late Aug -Oct	Oct- Jan	Spawn Time	
streams	Small headwater tributaries 1 st & 2 nd	Small & mid-size tributaries with moderate gradient	Small & mid-size tributaries with moderate gradient	Lower mainstem and tributaries	Small tributaries	Upper mainstem streams	Mainstem and large tributaries	Location	-
	Pea to Golf Ball (0.5-7.5 cm)	Pea to Apple (0.5- 9.0 cm)	Pea to Apple (0.5- 9.0 cm)	Pea to Orange (0.5-10.2 cm)	Pea to Apple (1.3- 9.0 cm)	Pea to Orange (1.3-10.2 cm)	Pea to Orange (1.3-10.2 cm)	Substrate Size	Table 2. Sali Oreç Spawning (ir
	0.01 –1 m; 10-15 cm best	>18 cm	> 18 cm	13-50 cm; ideal 21cm	0.18 – 1 m	Extremely variable 0.05-7 m	Extremely variable 0.05-7 m	Water Depth	monid Habit gon Coastal Including ups
Control Control	0.11- 0.90 m/s; max is	<2.4 m/s	<2.4 m/s	0.21- 0.83 m/s; max is 2.4 m/s	0.08 – 0.11 m/sec; max is 2.4 m/s	.21-1.5 m/s; max is 2.4m/s	0.1 – 1.5m/s; max is 2.4 m/s	Water Velocity	at Requireme Streams tream migrati
	>5 mg/l	>5 mg/l	>5 mg/l	>5 mg/l; above 80% saturation best	>8 mg/l	>5 mg/l	> 5 mg/l	Dissolved Oxygen	on)
	6-17°C; best is 10°C	3.9-9.4℃	3.9-9.4°C	7.2-12.8°C	4.4-14°C	5.6−13.9°C	5.6-13.9°C	Spawning Water Temp	
	Fines (<6.4 mm) make up less than 25% of substrate	Fines (<6.4 mm) make up less than 25% of substrate	Fines (<6.4 mm) make up less than 25% of substrate	Fines (<6.4 mm) make up less than 25% of substrate	Fines (<6.4 mm) make up less than 25% of substrate	Fines (<6.4 mm) make up less than 25% of substrate	Fines (<6.4 mm) make up less than 25% of substrate	Percent Fines Tolerable	
	May spawn more than once	May spawn more than once	May spawn more than once	Strong swimmer but doesn't jump	Primary target for many sport fisherman	Require deep water for travel-pools for summer habitat	Large body size limits movement over barriers	Notes	

	Incubation								
		•				Freshwater	Estuary		
	Incubation	Fry	Fry Habitat	Juvenile	Preferred	Residency	Residency	Notes	2004
	Temp.	Emerge		Habitat	Temp.	Period	Period		Status
	0.0-20°C;			Deeper water in	7.3-14.6° C	Days to 2 or	Extensive 5-	Estuaries play a	
Chinook –	best 5.0-	Mar-May	Stream;	main river	Growth stops at	3 months	6 months	vital role in	Healthy
Fall	14.4° C		river edges	channel	20.3° C lethal at		April-Oct.	survival of young	and stable
					25.2° C	Fall smolt			
	0.0-20°C;				7.3-14.6° C		Extensive	Large body size	
Chinook-	best 5.0-	Feb-Mar	Stream;	Deeper water in	Growth stops at	Days to 2 or	5-6 months	limits movement	Depressed
Spring	14.4° C		river edges	main river	20.3° C lethal at	3 months		over barriers	
				channel	25.2° C		April – Oct		
						Fall smolt			
			Backwater	Pools in summer,	11.8 – 14.6° C		Move		
Coho	4.4-13.3° C	Feb-June	pools and	off channel	Growth stops at	One year	through 2-9	Low pH (<5.01)	Depressed
			stream edges	alcoves, ponds,	20.3° C		days,	can be lethal to	
				complex cover in	Lethal at	Spring smolt	sometimes	alevins	
				winter	25.8° C		longer		
	4.4 - 13.3°C	Late Mar-	Move directly	High sediment	6.7 – 14.6°C	Hours to few		Use estuaries	
Chum		Apr	into estuary	levels (15.8-	Growth stops at	days, leave	2-32 days	immediately for	Depressed
				54.9 g/l) will kill	20.3°C lethal at	quickly		food and	
				juveniles	25.8°C	Spring smolt		adjustment	
	4.4- 13.3° C	May –	Stream	Pools, niffles, and	7.3-14.6°C				
Steelhead		June	edges	runs of tributary,	Growth stops at	2-3 years	Move	Good habitat	Depressed
Winter				habitat with, large	20.3° C	Spring smolt	through in	=small and large	
				woody debris,	Lethal at		days	wood complexity	
				(LWD) preferred	24.1° C				
	4.4 - 13.3°C	May-June	Stream	Pools, niffles, and	7.3 – 14.6°C	2-3 years	Move	Summer	
Steelhead-			edges	runs of tributary,	Growth stops at		through in	steelhead require	Primanily
Summer				habitat with, large	20.3° C lethal at	Spring smolt	days	deep cool pools	hatchery
				woody debris,	24.1°C			to live in before	fish
				(LWD) preferred				spawning	
	6.1 - 17.2°C	Mar-May	Stream edges	Prefer pools but are	9.5-12.9°C	2-4 Years	Used	Rearing in	
Sea Run			and backwater	often displaced by	Growth stops at		extensively as	estuary is	Depressed
Cutthroat			wood (I WD)	cono or steanead, Inw velocity nools	20.3°C lethal at	Spring smolt	adults belore	common	
Trout			important	and side channels	23.0°C		migration		

A W N

Groot, C. and L. Margolis, 1991. Pacific Salmon Life Histories. University of British Columbia Press, Vancouver, British Columbia Nickelson, T., J. Nicholas, A. McGie, R. Lindsay, D. Bottom, R. Kaiser, and S. Jacobs. 1992. Status of Anadromous Salmonids in Oregon coastal Basins. Oregon Dept. of Fish and Wildfile. Convallis, OR Reiser, D.W. and T.C. Bjornn, 1979 Habitat Requirements of Anadromous Salmonids. In W.R. Meehan (editor), Influence of forest and rangeland management on anadromous fish habitat in western North America, US Forest Service General Technical Report PNW-96 Pacific Northwest Forest Range Experiment Station, Portland, OR.

UNIT 4E: Salmon Supplemental Information SALMON HANDOUT 4E-4

Salmonid Habitat Requirements